FPGA based hybrid architecture for parallelizing RRT
نویسندگان
چکیده
Field Programmable Gate Arrays(FPGA) exceed the computing power of software based implementations by breaking the paradigm of sequential execution and accomplishing more per clock cycle by enabling hardware level parallelization at an architectural level. Introducing parallel architectures for a computationally intensive algorithm like Rapidly Exploring Random Trees(RRT) will result in an exploration that is fast, dense and uniform. Through a cost function delineated in later sections, FPGA based combinatorial architecture delivers superlative speed-up but consumes very high power while hierarchical architecture delivers relatively lower speed-up with acceptable power consumption levels. To combine the qualities of both, a hybrid architecture, that encompasses both combinatorial and hierarchical architecture, is designed. To determine the number of RRT nodes to be allotted to the combinatorial and hierarchical blocks of the hybrid architecture, a cost function, comprised of fundamentally inversely related speed-up and power parameters, is formulated. This maximization of cost function, with its associated constraints, is then mathematically solved using a modified branch and bound, that leads to optimal allocation of RRT modules to both blocks. It is observed that this hybrid architecture delivers the highest performance-per-watt out of the three architectures for differential, quad-copter and fixed wing kinematics.
منابع مشابه
New Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem
Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...
متن کاملA Novel FPGA Architecture using Memristor-Transistor Hybrid Approach
This work focuses on the design of a novel FPGA architecture based on memristor-transistor hybrid approach. A lot of research has been carried out in the field of FPGA that has focused on decreasing the size and power consumption of FPGAs. However, still FPGAs are larger in area, slower in speed and more power consuming. In this work, basic building blocks like MUX, NOR gate, D flip flop, NOT g...
متن کاملReconfigurable Active Drive: An FPGA Accelerated Storage Architecture for Data-Intensive Applications
This paper presents an FPGA-based Solid State Drive (SSD) architecture for data-intensive applications called Reconfigurable Active Drive (RAD). In the RAD architecture, an FPGA utilizes parallel data transfer of flash memory to improve the data throughput for streaming applications. The storage architecture is designed to match the I/O bandwidth of the FPGA and is capable of fully parallelizin...
متن کاملمدل عملکردی تحلیلی FPGA برای پردازش با قابلیت پیکربندی مجدد
Optimizing FPGA architectures is one of the key challenges in digital design flow. Traditionally, FPGA designers make use of CAD tools for evaluating architectures in terms of the area, delay and power. Recently, analytical methods have been proposed to optimize the architectures faster and easier. A complete analytical power, area and delay model have received little attention to date. In addi...
متن کاملPerformance Evaluation of Hybrid Reconfigurable Computing Architecture over Symmetrical FPGA
For last few decades, reconfigurable devices have been extensively used in digital systems. Reconfigurable computing using FPGA devices provide a method to utilize the available logic resources on the chip for various computations. The basic ability of reconfigurable computing is to perform computations in hardware to increase performance, while retaining the flexibility of application software...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1607.05704 شماره
صفحات -
تاریخ انتشار 2016